Search results for "Cosmic cancer database"

showing 10 items of 70 documents

On cosmic quantum tunneling from “nothing”

2015

We extend to a general Λ-Eriedmann-Lemaitre-Robertson-Walker (ΛFLRW) a previous result by Vilenkin and others according to which a closed de Sitter universe could be created from "nothing". More specifically, our main result is that only the closed ΛFLRW universe (but not the open and flat ones) could be created from a corresponding instanton, that is, from the corresponding solution with signature +4 of the Einstein field equations. Before getting this result the suitable corresponding instantons are calculated. The result is in accordance with previous results by another authors obtained by different methods.

PhysicsHistoryInstantonCOSMIC cancer databasemedia_common.quotation_subjectUniverseComputer Science ApplicationsEducationGeneral Relativity and Quantum CosmologyTheoretical physicsNothingDe Sitter universeQuantum mechanicsEinstein field equationsSignature (topology)Quantum tunnellingmedia_commonJournal of Physics: Conference Series
researchProduct

Commissioning the ATLAS silicon microstrip tracker

2009

Abstract The completed SemiConductor Tracker (SCT) has been installed inside ATLAS. Quick tests were performed last year to verify the connectivity of the electrical and optical services. Problems observed with the heaters for the evaporative cooling system have been resolved. This has enabled extended operation of the full detector under realistic conditions. Calibration data has been taken and analyzed to determine the noise performance of the system. In addition, extensive commissioning with cosmic ray events has started. The cosmic muon data has been used to align the detector, to check the timing of the front-end electronics as well as to measure the hit efficiency of modules. The curr…

PhysicsNuclear and High Energy PhysicsCOSMIC cancer databasePhysics::Instrumentation and Detectorsbusiness.industryDetectorCosmic rayMicrostripNoisemedicine.anatomical_structureOpticsAtlas (anatomy)medicineCalibrationElectronicsbusinessInstrumentationSimulationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages

2012

We present new observational constraints on inhomogenous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.

AstrofísicaVoid (astronomy)Cosmology and Nongalactic Astrophysics (astro-ph.CO)dark energy experimentsCosmic microwave backgroundgalaxy evolutionFOS: Physical sciencesAstrophysicsBayesian evidenceAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences0103 physical sciencesScale structuredark energy theory010303 astronomy & astrophysicsPhysicsCOSMIC cancer databaseCosmologia010308 nuclear & particles physicsAstronomy and AstrophysicsObservableGalaxiesGalaxyGalàxiesCosmologyHomogeneousAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Impact of cosmic inhomogeneities on SNe observations

2009

We study the impact of cosmic inhomogeneities on the interpretation of SNe observations. We build an inhomogeneous universe model that can confront supernova data and yet is reasonably well compatible with the Copernican Principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizeable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectgr-qcCosmic background radiationFOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences114 Physical sciencesGeneral Relativity and Quantum CosmologyCosmologysymbols.namesakeObservational cosmology0103 physical sciences010306 general physicsmedia_commonPhysicsCOSMIC cancer database010308 nuclear & particles physicsCopernican principleRedshiftUniverseLocal Voidsymbolsastro-ph.COAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Structure finding in cosmological simulations: the state of affairs

2013

The ever increasing size and complexity of data coming from simulations of cosmic structure formation demands equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the "halo finder comparison project": we investigate in detail the (possible) origin of any deviations across finders. To this extent we decipher…

Structure formationCosmology and Nongalactic Astrophysics (astro-ph.CO)Ciencias FísicasDark matterFOS: Physical sciencesAstrophysicsGALAXIES HALOESAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences//purl.org/becyt/ford/1 [https]0103 physical sciencesGalaxy formation and evolutionStatistical physics010303 astronomy & astrophysicsGalaxy rotation curveComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]COSMIC cancer database010308 nuclear & particles physicsAstronomy and AstrophysicsObservable//purl.org/becyt/ford/1.3 [https]AstronomíaGravitational lensSpace and Planetary ScienceLUMINOSITY FUNCTIONHaloGALAXIES EVOLUTION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic AstrophysicsGALAXIES STATISTICS
researchProduct

CMB anisotropies: cosmic confusion and polarization

2001

Abstract Some physical effects producing Cosmic Microwave Background (CMB) anisotropies are briefly described. The CMB angular power spectrum is calculated -in appropriate cases- with the essential aim of estimating and comparing the effects produced by reionization and gravitational waves; thus a problem of Cosmic Confusion is pointed out. Accurate measurements of the CMB polarization could solve this problem in future. Some comments about the PLANCK mission —ESA project for anisotropy detection— are given.

PhysicsNuclear and High Energy PhysicsCOSMIC cancer databaseGravitational waveCosmic microwave backgroundAstrophysics::Instrumentation and Methods for AstrophysicsAstronomySpectral densityAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsPolarization (waves)Atomic and Molecular Physics and Opticssymbols.namesakesymbolsPlanckAnisotropyReionizationNuclear Physics B - Proceedings Supplements
researchProduct

Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope

2012

In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E ¿2 n; spectrum, these flux limits are at 1-10 ¿10¿8 GeV cm¿2 s¿1 for declinations ranging from ¿90° to 40°. Limits for specific models of RX J1713.7¿3946 and Vela X, which include information on the source morphology and spectrum, are also given.

cosmic neutrinosUNIVERSEFluxVela01 natural scienceslaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)lawSIGNALSABSORPTION[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]MAXIMUM-LIKELIHOOD010303 astronomy & astrophysicsATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)COSMIC cancer database[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]ASTRONOMYneutrinosastroparticle physicsFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical PhenomenaREMNANT RX J1713.7-3946Particle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical PhenomenaNeutrino telescope[SDU.STU]Sciences of the Universe [physics]/Earth SciencesFOS: Physical sciencesddc:500.2Telescopeneutrinos; cosmic rays; astroparticle physicscosmic rays0103 physical sciencesPoint (geometry)ALGORITHMNeutrinosDETECTORCosmic raysUNDERWATER CHERENKOV NEUTRINO TELESCOPES010308 nuclear & particles physicsAstronomy and AstrophysicsHIGH-ENERGY PHOTONSSpace and Planetary ScienceFISICA APLICADAAstroparticle physics
researchProduct

The X-ray gas scintillation spectrometer experiment on the first spacelab flight

1985

The First Spacelab mission, launched on Space ShuttleFlight STS-9 in November 1983 carried a multidisciplinary payload which was intended to demonstrate that valuable scientific results can be achieved from such short duration missions. The payload complement included a spectrometer to undertake observations of the brighter cosmic X-ray sources. The primary scientific objectives of this experiment were the study of detailed spectral features in cosmic X-ray sources and their associated temporal variations over a wide energy range from about 2 up to 30 keV. The instrument based on the gas scintillation proportional counter had an effective area of some 180 cm2 with an energy resolution of ∼9…

PhysicsScintillationCOSMIC cancer databaseSpectrometerPayloadbusiness.industryAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyProportional counterAstronomy and AstrophysicsCosmologyAstronomical spectroscopyOpticsSpace and Planetary ScienceScintillation counterbusinessAstrophysics and Space Science
researchProduct

First search for point sources of high-energy cosmic neutrinos with the ANTARES neutrino telescope

2011

Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 0.1deg. The neutrino flux sensitivity is 7.5 ¿ 10 -8(E ¿/ GeV) -2 GeV -1 s -1 cm -2 for the part of the sky that is always visible (¿ < -48deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.

FLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics::Instrumentation and Detectorsmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesDeclinationneutrinos; cosmic rays; astroparticle physicscosmic rays0103 physical sciencesAngular resolutionALGORITHMNeutrinosDETECTOR010303 astronomy & astrophysicsCosmic raysmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsCOSMIC cancer databaseMuon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorneutrinosASTRONOMYAstronomy and Astrophysicsastroparticle physics13. Climate actionSpace and Planetary ScienceSkyFISICA APLICADAddc:520Física nuclearHigh Energy Physics::ExperimentNeutrinoAstroparticle physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Intracluster Medium reheating by relativistic jets

2011

Galactic jets are powerful energy sources reheating the intra-cluster medium in galaxy clusters. Their crucial role in the cosmic puzzle, motivated by observations, has been established by a great number of numerical simulations missing the relativistic nature of these jets. We present the first relativistic simulations of the very long term evolution of realistic galactic jets. Unexpectedly, our results show no buoyant bubbles, but large cocoon regions compatible with the observed X-ray cavities. The reheating is more efficient and faster than in previous scenarios, and it is produced by the shock wave driven by the jet, that survives for several hundreds of Myrs. Therefore, the X-ray cavi…

PhysicsShock waveHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)COSMIC cancer databaseCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsExtragalactic astronomyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysical jetSpace and Planetary ScienceIntracluster mediumEnergy sourceAstrophysics - High Energy Astrophysical PhenomenaGalaxy clusterAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct